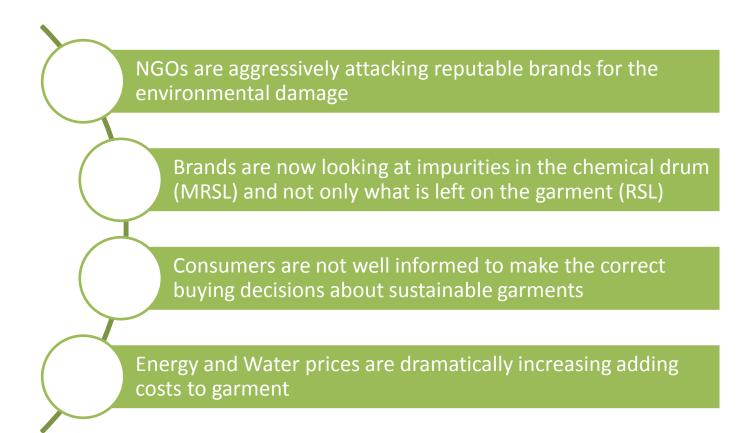


TOWARDS SUSTAINABLE TEXTILES

Balancing cost and compliance

A changing environment......

Key market challenges pressure on brands on pollution



Key ecological market drivers

We continuously challenge the status quo in the deep belief that we can make our industry sustainable.

Commitment to sustainability

ØZDHC Zero Discharge of Hazardous Chemicals

clean up its own backyard !

and the state

Archroma textile sustainability core values

Buy			
Raw materials with	Make		
better eco-profile	Continuously improve	Control	
	Archroma production processes	Test Sheet Eco + provide confidence	Innovate
		about our sourcing, manufacturing and therefore compliance	Products that allow more sustainable production processes : less water, energy and waste
			Products that allow more sustainable end- products for the consumer

2010 WASTE WATER

1425 m3 per day

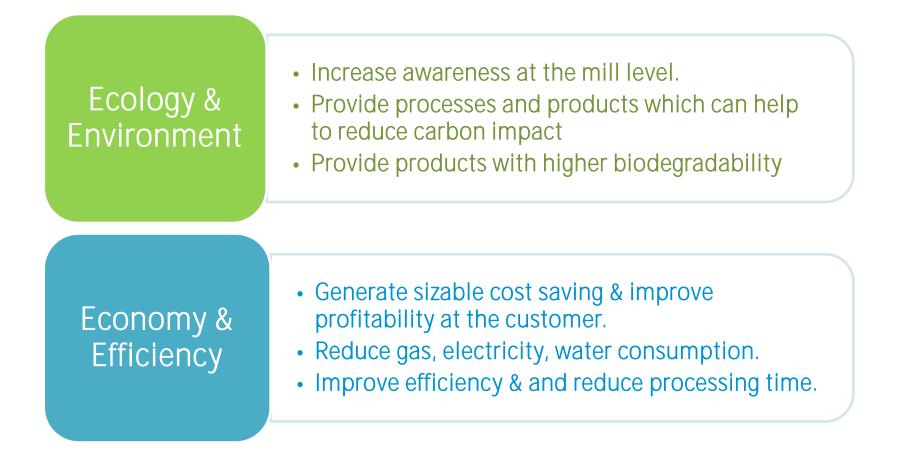
2014 WASTE WATER

> 0 m3 per day

Dedicated global product stewardship experts

- A team of experienced chemists fully dedicated to textile chemicals in Archroma's Product Stewardship departments
- An international network of specialized Product Safety labs with eco testing facilities : Mumbai (India), Karachi (Pakistan), Tianjin (China)

Eco-advanced innovation flow

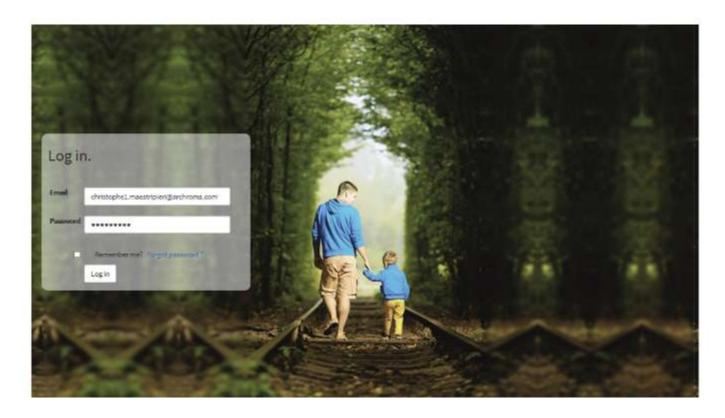


ONE WAY

Balancing the cost of compliance with sustainable production

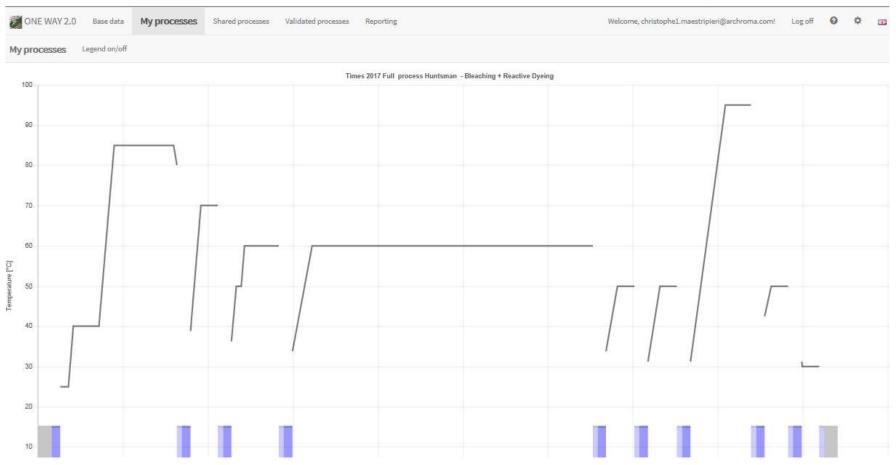
ONE WAY Objectives

Measurable sustainability in action


ONE WAY three steps selection:

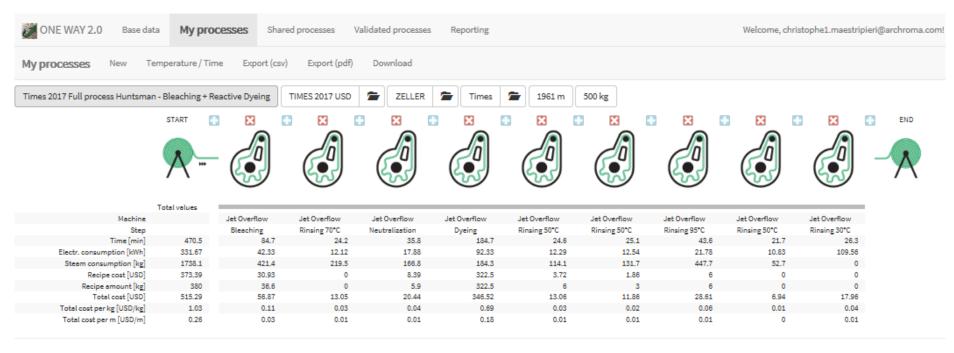
One Way - Web base access

Welcome, christophet, meestripieri@erchrome.com/ Log.off 0 0 00

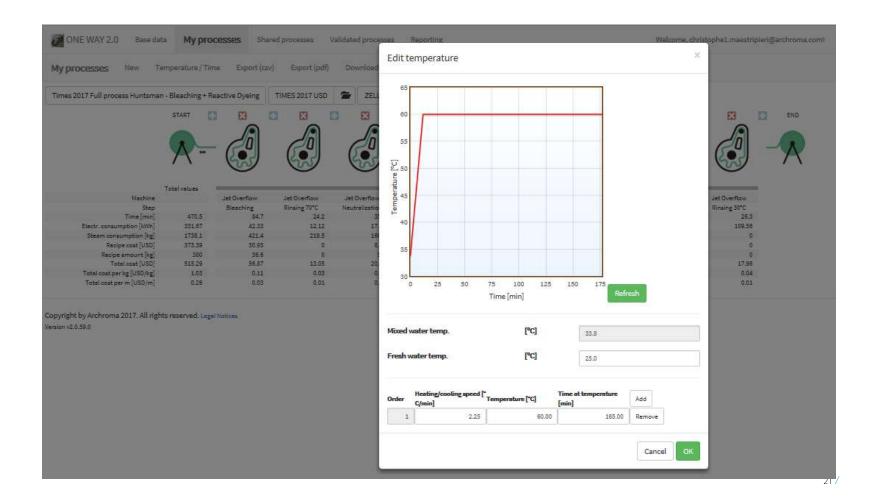


One Way- Step 1 base data from the mill

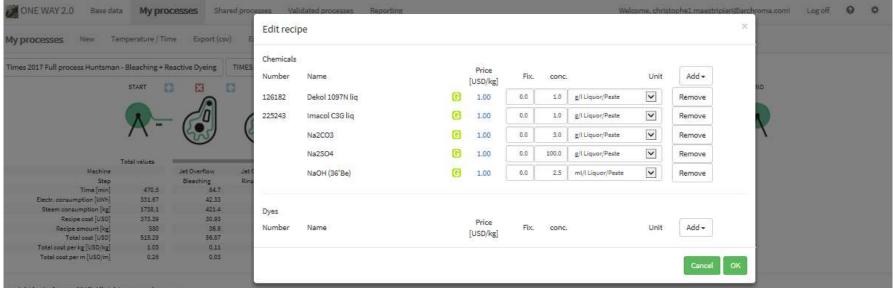
ONE WAY 2.0 Base data My processes Shared processes Validated processes	ises Reporting			Welcome, christ	tophe1.maestripieri@archroma.com! Lo
Base data Factory Material Dyes Custom dye Chemicals Custom chemi	Edit factory			×	
Factory New	Name				
	Energy mix country		Others	~	
SANLI 2016 25/09/2017 12:44:15 / christophe1.maestripieri@archrome.com	Energy mix CO2	[t/mWh]			
TIMES 2016 23/30/2016 07-48-34 / christophet_meastripieri@erchrome.com	Currency symbol		CHF		
TIMES 2017 USD					
28/09/2017 14:57:29 / christophe1.maestripieri@erchrome.com	Fresh water temperature	[°C]	25		
Copyright by Archroma 2017. All rights reserved. Legel Notices	Fresh water price	[CHF/m ^s]	1.0000		
Version v2.0.59.0	Waste water / effluent treatment price	[CHF/m ^s]	1.0000		
	-				
	Electricity price	[CHF/kWh]	1.0000		
	Boiler efficiency	[%]	90		
	Boiler heating medium		Please select	\checkmark	
	Gas price	[CHF/m ^a]			
			1.0000		
	Oil price	[CHF/I]	1.0000		
	Coal price	[CHF/kg]	1.0000		
	Brown coal price	[CHF/kg]	1.0000		



One Way- Step 2 converting the process


One Way - Step 3 the process

Copyright by Archroma 2017. All rights reserved. Legel Notices Version v2.0.59.0 $\,$



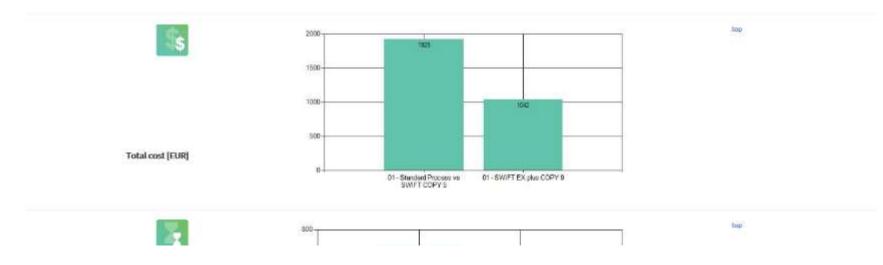
One Way - Step 3 the process temperature profile

One Way - Step 3 the process recipe

opyright by Archroma 2017. All rights reserved. Legel Notices

One Way - Step 3 the process data

ONE WAY 2.0 Base da					es Reporting Edit machine		Welcome.c	hristophe1.maestripieri@archroma.coml X
	femperature / Tim		17. ECHARGETER(T) 3	Download	Machine type		Jet Overflow	
Times 2017 Full process Huntsma	sn - Bleaching + Re	<u> </u>	TIMES 2017 USD	ZELL	Name		Jet Overflow	
					Description		Jecovernow	
Mechine	Total values	Jet Overflow	Jet Overflow	Jet Overflow	ProcessType		Exhaust	Jet Overflow
Step Time[min]	470.5	Bleeching 84.T		Neutrelizatio Si	Power demand	[kW/kg]	0.0600	Rinsing 30°C 28.3
Electr. consumption [kWh]	331.67	42.33	12.12	17.	2 2 222			109,58
Steam consumption [kg] Recipe cost [USD]	1738.1 373.39	421.4	219.5 0	18	Loading time	[min]	8	0
Recipe amount [kg]	\$80	36.6	ő	1				
Total cost [USD]	515.29	56.8T	13.05	20	Unloading time	[min]	8	17.96
Total cost per kg [USD/kg]	1.05	0.11	0.03	0.				0.04
Totel cost per m [USD/m]	0.26	0.03	0.01	ο.	Time to fill	[min]	5	0.01
opyright by Archroma 2017. All rig	hts reserved. Legal	Notices			Time to drain	[min]	3	
esion v2.0.59.0				1	Energy loss chassis	[%]	10	
				I.		_	Cancel	1


One Way - Step 4 the process information requested

					Result values	Deselect all	Select all	
ONE WAY 2.0 Base da	ta My proc	esses Share	ed processes	Validated proo	☑ Time	Deselect au	bphe	1_maestripieri@archroma.com!
					□ Water consumption			
processes New T	emperature / Time	Export (csv)	Export (pdf)	Download	□ Water cost			
					Electr. consumption			
es 2017 Full process Huntsma	n - Bleaching + Rea	ctive Dyeing	TIMES 2017 USD	T ZELL	Electricity cost			
		~			Heating energy			
	START 🛄	EB		E E3	Total energy			END END
	- N-	CU	CU	RU	Steam consumption		6	
	7	Sal	6.1	Sol	Steam cost		6	
		9	9	9	Gas consumption			9
	Total values			_	Gas cost			
Machine		Jet Overflow	Jet Overflow	Jet Overflord	Oil consumption			Overflow
Step Time (min)	470.5	Bleaching 64.7	Rinsing 70*C 24.2	Neutralization	🗌 Oil cost		Rins	ing 30°C 26.3
Electr. consumption [kWh]	331.67	42.33	12.12	17	Coal cost			109.56
Steam consumption [kg]	1735.1	421.4	219.5	15	Brown coal cost			0
Recipe cast [USD]	373.39	30.93	0	8	Wood cost			0
Recipe amount [kg] Total cost [USD]	380 515.29	36.5 56.87	0 13.05	55				0 17.96
Total cost per kg [USD/kg]	1.03	0.11	0.03	0	Bagasse cost			0.04
Total cost per m [USD/m]	0.26	0.03	0.01	0	🗌 Rice husks cost			0.01
					CO2 (Electricity)			
5 X X 15 5					CO2 (Heating energy)			
ight by Archroma 2017. All righ v2 0.59.0	its reserved. Legal I	otices			Total CO2			
1.vz.v.dz.v					Operational/people cost			
					Recipe cost			
					Recipe amount			
					Total COD			
					Total BOD5			
					BOD5			
					Total BOD28			
					BOD28			
					Ratio BOD5/COD			
					Ratio BOD5/COD Ratio BOD28/COD			

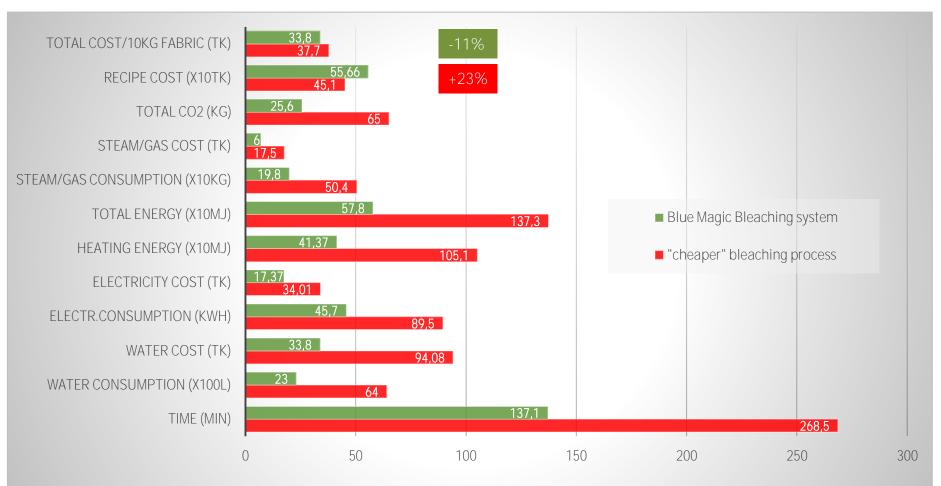
One Way - Step 5 the Report

BLUE MAGIC

A bleaching auxiliary that provides productivity gains with dramatically reduced environmental impact in water and energy

Digitized benchmark and optimized **mill's bleaching** process

	START	Not +			Winds	Winds
		1st Step Beach	Overflow man	wants at loof	must 60	neutralisation and anzyme
	Total values					
Time (min)	268.5	124.5	38	39	27	
Water consumption ()	6400	1400	2300	900	907	900
Water cold [TK]:	83.2	18.2	253	.0.7	11.7	.11.
octr. consumption (kWh)	89.5	41.5	12.67	13	9	10.3
(Bechicity cost (TH))	447.5	207.5	63.33	65	45	65.6
Heating Energy (M/)	1051.51	400.52	154.45	334.5	74.82	57.2
Total Energy (MU)	1377.73	543.92	230.05	381.7	107.22	105.2
Sam consumption (vg)	504.32	192.03	81.47	190.43	25.83	27.4
Steam-coat (TK)	165.67	63.1	23.06	52.7	11.79	3.0
Gas consumption (m/)	42.92	35.35	7.63	13.65	3.05	23
Ges cost (TK)	185.67	63.1	29.06	52.7	18.75	- 30
C. Heating Energy Right	83.65	31.88	34.58	25.62	5.96	4.6
Tatel CO- (kg)	03.65	35.84	14.55	25.62	5.96	45
Roope cest (TK)	451.2	451.2				
Total cost (TR2	1147.57	742.01	122.29	129.4	62.45	37.3
Total cost perkg (TK/kg)	574	37	0.61	0.65	0.54	0.4


- Large amounts of caustic, leading to :
 - Long rinse cycles required to remove
 - Increased TDS in the Waste Water
 - Potential for subsequent yellowing if not removed
- Longer process leads to more fibre damage and weight loss

	START	Wret → ∕® →	Winch
	X	Gently	theast
		Bue wapa Bleaching	neutralization and enzyme
	Total values		
Time (min);	137,1	54.5	42.9
Valer consumption 🕅	2300	1400	500
Water cost (TK):	29.9	18.2	16,7
consumption & White	45.7	315	14.2
Bedroty cost [TK].	228.5	157.5	75
Heating Energy (MJ):	413.72	400.52	112
Total Energy (MJ).	578.24	513,90	64.32
an consumption (kg)	198.43	192.09	6.33
Steam cost (TR)	65,18	63.1	2.06
See consumption (m)	16.89	16.35	0.54
Gas cost (FR)	(5.18	43.1	2 00
Heating Energy (Kg):	32.93	31.88	1.05
Total CO- Rolt	32.93	31.08	1.08
Reope cost (TK):	556.63	556.68	
Total cost (TK):	850.26	795.48	84.78
oset per kg (TK/kg):	4.4	3.60	0.42

- Less resource utilisation (water, energy, time)
- Higher productivity
- Less fabric weight loss
- Reduced COD and BOD values compared to standard processing
- Maximal absorbency
- Higher degree of whiteness

Calculation output of results

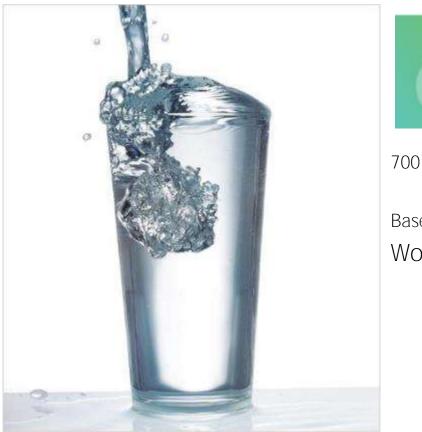

Score card

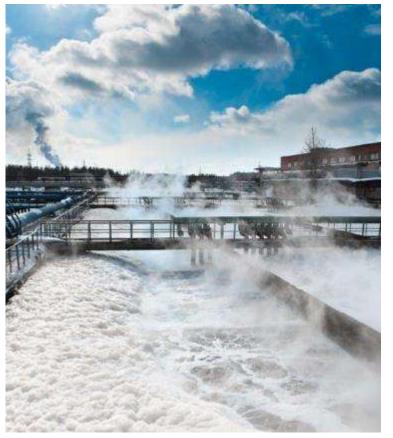
Image: Additional and the consumptionImage: Additional and the consumption<thImage: Additional and the consumption</th>Image:

*All without any additional investment in machinery

- Peace of mind that dyes are RSL/MRSL compliant
 - Free of APEO, reduced heavy metals and phosphonates
- Dramatically reduced water, energy and CO₂ emissions
- Actual overall cost savings (~11%)
- Increased capacity or opportunity time (~49%)
- Additional savings in volume of cotton loss (~2%)

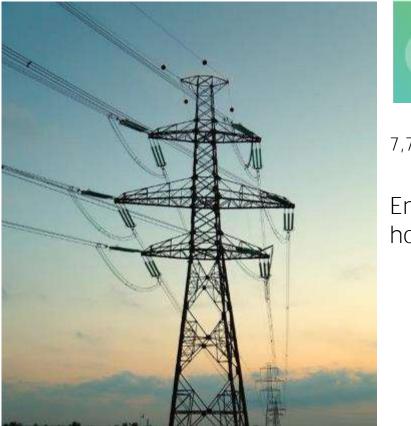
700,000L water/day savings

Based on 2L recommended intake of water Would satisfy <u>350,000 people/day</u>



7 MT CO2 less emissions/day

Daily emission of ~430,000 standard cars



12 MT less NaOH/day

Dramatically less salt in the WWTP (12MT NaOH also needs 12MT HCL)

7,700 kWh electricity/day savings

Enough electricity to power 300 homes/day in Dhaka

Drimaren[®] HF reactive dyes for cellulose

- Full color range
- High degree of fixation to ensure minimal colour in effluent
- High productivity and process reliability
- Meets the fastness and ecological standards of leading brands

Foron[®] S-WF dyes for polyester and blends

- Full colour range
- meets the highest wet fastness requirements of leading brands
- Full Range of alkali clearable disperse dyes, where high wash fastness can be achieved in continuous dyeing without an intermediate reduction clearing process.

The <u>traditional dyeing process</u> for disperse/reactive dyeing of PES/CEL blends (Europe)

A very long and costly dyeing process, permitting a maximum of two dye lots per machine per day.

	START	ne Overlan Andrew Networks	Art Doubles	Jan Construe Construe Deserve Dynerg	an Countran Ala	An Orankow Andrew Robustion of an	in Contract Annual State	Jet Deathors	Jan Crambian Annual Sch C	ver Grantiere Annang 18 1	int Contract Contract Sciences 1970	Act Constitues	ver Dominise Australia Reason 471
Tare (no)	709	96	26.33	144	25.67	48.5	25.35	139	26.35	26:33	60.5	24	63
Water consumption []].	29400	3000	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400
Water cest (EUR):	138.18	14.3	11.28	11.28	11,28	11.28	11.28	11.28	11.28	11.28	11.28	11.28	11.28
Beatr, consumption (KWh):	182.78	24.96	6.85	37.64	6.57	12.09	6.59	36.14	5.85	6.65	15.73	5.24	16.38
Bectricity cost (EUR):	27.42	3.74	1.00	5.62	1	1.61	0.99	542	100	1.03	2.36	2.94	2.46
Heating Energy (HL)	5009.23	\$15.77	152.15	1118.55	182.15	403.34	163 14	790.66	20E 1B	208.18	663.56	182.15	250
Total Energy (MJ)	5667.24	1000.63	206.8	1253.73	206.18	446.85	192.86	910.76	232 82	232.82	720.19	204.62	58.97
Steam consumption [rg]	2402.51	435.82	87.36	536.66	87.36	193.45	81.12	374.42	99,84	99.84	318.25	17.36	
Steam out (EUR)	111.13	20.21	4.04	24.82	4.04	8.95	3.76	17.32	4.62	4.62	14.72	4.04	
Gas consimption (m)	352.38	39.61	6.12	37.61	6.12	12.56	5.69	25.24	7	7	72.3	6.12	1.0
Ges cod [[UR]:	111.13	20.21	4.04	34 82	4.04	0.95	3.75	17.32	4.62	4.62	14.72	4.06	5.4
Total cost (EUR):	513.73	53.05	16.35	58.82	16.32	37.04	16.02	214.92	16.50	15.93	31.36	16.26	19.74
Total cost per kg (EUR/kg)	171	0.18	0.05	-02	0.05	2.12	105	0,72	0.06	0.06	0.1	0.05	0.07

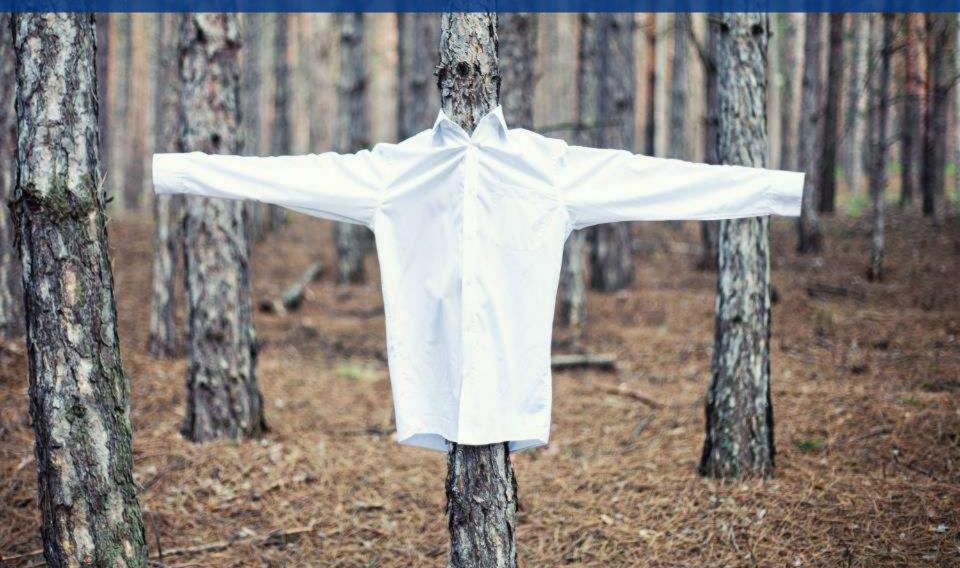
For many years attempts were made to find ways to dye PES/CEL fibre faster, however

- Not all shades could be dyed by a given process,
- The processes proved to be unreliable, giving large batch to batch variations
- Off-shade batches couldn't be corrected easily

SWIFT + Process (Europe)

	START	Jet Overflow Analog 60°C	Jet Overflow	Jet Overflaw Construction Pensing 60°C	Jet Overflow	Jet Overflow	Jet Overflow Rinning 30 °C	Jet Overflow
Time (min):	453.33	37.67	164	25.67	139	26.33	26.33	34.33
Water consumption #:	17400	3000	2400	2400	2400	2400	2400	2400
Water cost (EUR):	\$1.78	14,1	11,28	11.28	11.28	11.28	11.28	11.28
Bectr. consumption (kWh);	117.87	9.79	42.64	6.67	36.14	6.85	6.85	8.93
Electricity cost (EUR);	17.68	1.47	5.4	1	5.42	1.03	1.03	1,34
Heating Energy [MJ]:	2394.02	260.22	1118.95	182.15	208.18	208.18	208.18	208.18
Total Energy (MJ):	2818.34	295.48	1272.45	206.18	338.28	232.82	232.82	240.31
Steam consumption [kg]:	1148.21	124.81	536.66	87.36	99.84	99.84	99.84	99.84
Steam cost (EUR)	53.11	5.77	24.82	4.04	4.62	4.62	4.62	4.62
Gas consumption (m?):	80.47	8.75	37.61	6.12	7	7	7	7
Gas cost (EUR):	53.11	5.77	24.82	4.04	4.62	4.62	4.62	4.62
Total cost (EUR):	364.07	21.34	73.1	16.32	202.22	16.93	16.93	17.24
otal cost perkg [EUR/kg]:	1.21	0.07	0.24	0.05	0.67	0.06	0.06	0.06

- Combined rinsing and pre-bleaching of the fabric after polyester dyeing
- Combined reduction clearing of the disperse dyes during the reactive dye fixation
- Suitable for all shades and all depths with easy corrective shading possible
- Optimum wet fastness level with the same handfeel for all shades



- Peace of mind that dyes are RSL/MRSL compliant
- Production time reduced more than 4 hours
- Large water savings :
 - Saves 40L/kg PES/Cotton fabric; in a 300kg batch = 12,000L/batch
- Dramatically reduced energy and CO2 emissions
- Increased capacity or opportunity time

Fixapret Resin WFF - Wrinkle Free & formaldehyde Free finish for woven fabrics

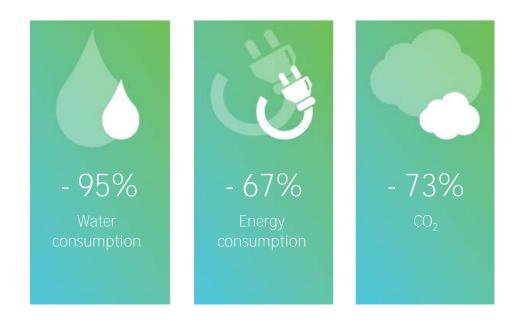
- Formaldehyde free finishes have been available for many years, however limited with respect to a conventional "non iron" finish performance
- A new chemistry which allowed the crosslinking to be more flexible which led to an Increased performance in durable press and also abrasion resistance

Conventional resin finishing process for shirting With a requirement of < 16ppm formaldehyde

	START	Padder Padder Reser Padding	Hot Flue Hot Flue Resin doma 18 [sr/min]	Stanfor	Washing machine	Cylender Drywr 	Padder	Storter
Time (min):	555.56	\$55.56	555.56	555 56	555.56	555.56	\$55.55	955.56
Water consumption []:	46237.04	2600	1	÷	41537.04	14	2100	
Water cost [USD]:	36.53	2.05		-	32.81		1.66	-
Best: consumption (kith):	1644,29	500	225.6	33.08	180.56	138.89	500	66.16
Becetory cost [USD];	151.27	46	20.75	3.04	16.61	12.78	45	5.09
Heating Energy (MJ):	29691.47		4742.14	3188.77	3450.76	9850.67		5449.14
Total Everyy (MJ):	31610.91	1800	5554.3	3307.85	3100.76	10360.67	1800	5687.32
Reen consumption (kg);	5904.76	+	1	4	1175.42	4729.34	+	
Steen cost (USD):	233.04	-	32		46.39	186.65	it.	
Gas consumption (m ²):	821.98	1	135.49	91.11	87.53	352.17		155.69
Gas cost (USD):	435.65		71.81	48.29	46.39	186.65		82.52
CO. (Bechicity) (kg)	10.84	33	1.49	0.22	1.19	0.92	33	0.44
CO. (Heating Energy) (kg):	1602.86	*	264,2	177.65	170.68	686.73		303.59
Total CO+ kgl:	1613.7	3.3	265.69	177.88	171.87	687.64	33	364.03

Conventional processing is long due to ::

- Low formaldehyde systems which requires post washing and drying
- Subsequent application of handle modifiers which requires additional steps



Fixapret Resin WFF process

	START	Padder	Hot Flue	Stenter
	ହ		₩,	
		Resin Padding	Resin drying	Resin curing
		18 [m/min]	18 [m/min]	18 [m/min]
	Total values			
Time [min]:	555.56	555.56	555.56	555.56
Water consumption []:	2600	2600	-	-
Water cost [USD]:	2.05	2.05	-	-
Electr. consumption [kWh]:	758.68	500	225.6	33.08
Electricity cost [USD]:	69.8	46	20.76	3.04
Heating Energy [MJ]:	7629.22	-	4742.14	2887.08
Total Energy [MJ]:	10360.47	1800	5554.3	3006.17
Steam consumption [kg]:	-		-	-
Steam cost [USD]:	-	-	-	-
Gas consumption [m ³]:	217.98	-	135.49	82.49
Gas cost [USD]:	115.53	-	71.81	43.72
CO ₂ (Electricity) [kg]:	5	3.3	1.49	0.22
CO ₂ (Heating Energy) [kg]:	425.06	-	264.2	160.85
Total CO ₂ [kg]:	430.06	3.3	265.69	161.07

- Due to the "formaldehyde free" chemistry no washing off is required
- Handle modifiers can be applied in the same step
- Dramatically reduced water and energy consumption

- Peace of mind that dyes and auxiliaries are RSL/MRSL and BSSL compliant
- Formaldehyde free fabric
- Dramatically reduced water & energy usage and CO2 emission
- Conventional process = 4.6L water/M;
- Fixapret Resin WFF process = 0.26L water/M
- Less damaged fabric higher tensile strength

Sustainability means opportunities

Industry is facing new challenges with *push* from legislators and *pull* from brands and consumer - demand for complete new approaches to manufacture and application of colorants

Colorant manufacturers need to seize the initiative and find new more sustainable ways to produce with minimal environmental impact

Textile producers too need to embrace new coloration technologies to conserve resources and develop ecological textiles to meet the new expectations of consumers

Market challenges opens way for new innovations in more ecological colorants, manufacturing & application technologies and in waste management

In a nutshell

Cost efficiency

Reduced water or energy consumption

Nature-friendly ingredient selection

THANK YOU FOR YOUR ATTENTION

1